quinta-feira, 1 de agosto de 2019

Princípio de d'Alembert, também conhecido como o Princípio de Lagrange d'Alembert, é uma afirmação das leis clássicas fundamentais de movimento, e deve-se ao físico e matemático francês Jean le Rond d'Alembert. O princípio afirma que a soma das diferenças entre as forças agindo em um sistema e as derivadas no tempo dos momento do sistema ao longo de um deslocamento virtualconsistente com os vínculos do sistema, é zero. Ou, matematicamente:
X


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
em que:  são as forças aplicadas;
 é o deslocamento virtual do sistema, consistente com os vínculos;
 são as massas das partículas do sistema;
 são as acelerações das partículas do sistema;
 representa a derivada temporal do momentum linear da i-ésima partícula.
A dinâmica é análoga ao princípio do trabalho virtual para forças aplicadas em um sistema estático, e é mais geral que o princípio de Hamilton pois evita a restrição a sistemas holonômicos (sistemas cujos vínculos dependem somente das coordenadas e do tempo, e não das velocidades) . Se os termos negativos nas acelerações são pensados como forças inerciais, a afirmação do princípio de d'Alembert se torna: O trabalho virtual total realizado pelas forças impressas mais as forças inerciais é zero para deslocamentos reversíveis.
A equação acima, apesar de ser conhecida como princípio de d'Alembert, foi primeiramente obtida nesta forma variacional pelo matemático italiano Joseph Louis Lagrange. A contribuição de d'Alembert foi demonstrar que num sistema dinâmico como um todo as forças de vínculo zeram, o que é equivalente a dizer que as forças generalizadas  não precisam incluir as forças de vínculo.



Na física teórica, a equação de Udwadia-Kalaba é um método para derivar as equações de movimento de um sistema mecânico com restrições.[1] Esta equação foi descoberta por Firdaus E. Udwadia e Robert E. Kalaba em 1992.[2] A equação também generaliza forças de restrição que não obedecem ao Princípio de d'Alembert.[3][4]

Na física teórica, a equação de Udwadia-Kalaba é um método para derivar as equações de movimento de um sistema mecânico com restrições.[1] Esta equação foi descoberta por Firdaus E. Udwadia e Robert E. Kalaba em 1992.[2] A equação também generaliza forças de restrição que não obedecem ao Princípio de d'Alembert.[3][4]

Restrições não ideais[editar | editar código-fonte]

A qualquer momento durante o movimento podemos levar em consideração perturbar o sistema por um deslocamento virtual 𝛿r consistente com as restrições do sistema. O deslocamento pode ser reversível ou irreversível. Se o deslocamento for irreversível, ele executará o trabalho virtual. Podemos escrever o trabalho virtual do deslocamento como:
X


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
O vetor  descreve a não-idealidade do trabalho virtual e pode estar relacionado, por exemplo, com forças de fricção ou arrasto(essas forças têm dependência na velocidade). Este é um princípio generalizado de D'Alembert, onde a forma usual do princípio tem um trabalho virtual que desaparece com .
A equação de Udwadia-Kalaba é modificada por um adicional termo de restrição não ideal para


X

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D